🔦Limits

A mathematical limit tells you how to find a constant output for a function for a specified input. Depending on the function, this evaluation may fail, or may be too complicated to "see" at first.

Definition

You're given a function. The function has a constant, known output value if we evaluate the function at values very close to some chosen input value.

More precisely, given a function

f(x)f(x)

if we observe a very small changes to the output

ϵ>0\epsilon > 0

when given any small change to the input

δ>0\delta > 0

such that the differences in the inputs and outputs are smaller than the differences of the changes, written as

0<xa<δ0< |x-a|< \delta

for inputs and

f(x)L<ϵ|f(x) - L| < \epsilon

for outputs, then we can say the limit of the function at the point of interest a is the constant L. We write this as

limxa[f(x)]=L\lim \limits_{x \to a} [ f(x)] = L

Basic Properties

Constants may be extracted from the limit evaluation

limxa[cf(x)]=climxa[f(x)]\lim \limits_{x \to a }[c f(x) ] = c \lim \limits_{x \to a}[f(x)]

Every algebraic operation you can do on functions within a limit evaluation can be done on the evaluations of limits

Such as, addition

limxa[f(x)+g(x)]=limxa[f(x)]+limxa[g(x)]\lim \limits_{x \to a}[ f(x) + g(x)] = \lim \limits_{x \to a}[f(x)] + \lim \limits_{x \to a}[g(x)]

subtraction

limxa[f(x)g(x)]=limxa[f(x)]limxa[g(x)]\lim \limits_{x \to a}[ f(x) - g(x)] = \lim \limits_{x \to a}[f(x)] - \lim \limits_{x \to a}[g(x)]

multiplication

limxa[f(x)g(x)]=limxa[f(x)]limxa[g(x)]\lim \limits_{x \to a}[ f(x) g(x)] = \lim \limits_{x \to a}[f(x)] \lim \limits_{x \to a}[g(x)]

division

limxa[f(x)g(x)]=limxa[f(x)]limxa[g(x)]\lim \limits_{x \to a}[ \frac{ f(x) }{ g(x) }] = \frac{ \lim \limits_{x \to a}[f(x)] }{\lim \limits_{x \to a}[g(x)] }

exponentiations

limxa[f(x)n]=limxa[f(x)]n\lim \limits_{x \to a}[ f(x)^n ] = \lim \limits_{x \to a}[f(x)]^n

and roots

limxa[f(x)n]=limxa[f(x)]n\lim \limits_{x \to a}[ \sqrt[n]{f(x)} ] = \sqrt[n]{\lim \limits_{x \to a}[f(x)]}

Last updated